

REDACt Project Final Meeting 8-9 June 2023 Thessaloniki, Greece

Earthquake damage assessment of gas pipelines

Can Zülfikar¹, Yasin Fahjan², Okan İlhan³, Furkan Kanlı¹, Rizwan Akram¹

¹ Gebze Technical University ² Istanbul Technical University ³ Ankara Yıldırım Beyazıt University

Worldwide Natural Gas Pipelines Data

Country	Natural Gas Pipeline Length (KMs)
Turkey	12,603
United States	1,614,936
United Kingdom	28,603
Russia	163,872
India	17752
Germany	26,985
France	15,322
China	104,000
Brazil	17,312
Argentina	29,930
Australia	30,054
Iran	20,794
Italy	20,223
Mexico	18,074
Ukraine	36,720

https://www.cia.gov/library/publications/the-world factbook/fields/2117.html

Examples of Gas Pipeline Failures in Previous Major Earthquakes

Methodology for seismic hazard evaluation

Methodology for seismic hazard evaluation: I) Pipe inventory, II) available maps of the region, III) hazard factors, IV) GMPEs, V) PGA, PGV, VI) Sa (0.1), Sa (0.2)

Methodology for SeismicRisk Evaluation

Seismic risk evaluation: I) hazard parameters II) vulnerability analysis, III) loss figures, IV) fragility functions (methodology), and V) Damage maps

Urban Earthquake Risk of Buried Pipeline

a) Turkish regional map and buried gas pipelines network b) High-pressure gas network of Düzce – Gebze regions as a test-bed scenario

Pipe Element	Diameter (m)	Thickness (m)
PE-1	0.4572	0.0041
PE-2	0.9144	0.0088
PE-3	0.6096	0.0064
PE-4	0.5080	0.0048
PE-5	0.6096	0.0064
PE-6	0.6096	0.0064
PE-7	0.6096	0.0064
PE-8	0.9144	0.0088

Pipelines diameter and thickness (Ref: www.botas.gov.tr)

Fragility Relationships: Japan Waterworks Association (1998)

 $Rm(PGV) = R(PGV) \times Cp \times Cg \times Cl$

where

0.06 Rm(PGV): damage ratio (points/km) PGV: Peak Ground Velocity (kine = cm/sec) (poin $R(PGV) = 3.11 \times 10^{-3} \times (PGV-15)^{1.3}$ 0.04 Cp: pipeline material coefficient ratio **-** Tokyo (1997) 0.01 for Steel -D- Izm it (Izm it Eq.) Ļ 0.00for Polyethylene Damage 0.02 Cg: ground condition coefficient 1.5 for Yd, Sd, Ym 1.0for Qal, Ksf, Oa, Q $\left(\right)$ 0.4 for others 50 100 150 $\left(\right)$ Cl: liquefaction coefficient PGV (kine)

- 2.0 for Ym, Yd, Sd, Qal, Ksf, Oa, Q
- 1.0 for others

Buried Gas Pipe damage function - webled steel-

Botas Natural Gas Pipeline Risk Assessment Results

16 15

17 16

18 17

Unknown Line Type

Unknown Line Type

Unknown Line Type

CS3-Pendik DGBH

CS3-Pendik DGBH

CS3-Pendik DGBH

Gas Pipeline

Gas Pipeline

Gas Pipeline

36

36

36

25.8065000000 0.3000000000 1.0000000000 0.5000000000

25.8065000000 0.3000000000 1.000000000 0.5000000000

25.8065000000 0.300000000 1.000000000 0.5000000000

Botas Natural Gas Pipeline Risk Assessment Results

Fig. 1: Kocaeli Eartquake Event and Fault Information in Run Interface

Fig. 3: Number of Damage Distribution Map

Botas Natural Gas Pipeline Risk Assessment Results

Fig. 4: PGV(cm/s) Distribution Map

Fragility Relationships: ALA (2001)

• Proposed two different vulnerability functions for wave propagation using the data from O'Rourke and Ayala (1993), Toprak (1998), and Isoyama et al. (2000).

Wave Propagation: $RR (repairs/1000 ft) = K_1 \times 0.00187 \times PGV$ Permanent Ground Deformation: RR (repairs/1000 ft) = $K_2 \times 1.06 \times PGD^{0.319}$

Fragility Relationships: Chen et al. (2002)

• Assessed the performance of natural gas (types of polyethylene (PE), steel, and cast iron, CI) and water pipelines during Chi-Chi earthquake.

Fragility Relationships: O'Rourke et al. (2015)

- Ground-strain based fragility relations of buried segmented pipelines using the data from 10 different earthquakes.
- The pipeline damage data observed in Adapazari due to 1999 Kocaeli Earthquake is included.

Fragility Relationships: Logic Tree

- Considering all the fragility relations presented, a logic tree of fragility curves will be constructed to account for epistemic uncertainty in the damage assessment to buried pipelines.
- <u>Current Status</u>: The application of these relationships through REDAS...

ALA (2001): w = 0.6 PGD Hazard

O'Rourke et al. (2015): w = 0.4

Deliverable D.T3.4.1: Earthquake Damage Assessment of Natural Gas Pipelines (Pilot Study)

Earthquake damage assessment of natural gas pipelines (pilot study) Deliverable No: D.T3.4.1

GA T3 IMPLEMENTATION (Implementation of REDA system (pilot studies)), A,T3,4 (Earthquake damage assessment of natural gas pipelines (pilot study)

> COORDINATED BY: Gebze Technical University (GTU)

INVOLVED PARTNERS;

 The Legal Successor of Technological Educational Institute of Central Macedonia - Special Account for Research Funds, International Hellemic University Special Account for Research Funds (TEICM)

 Institute of Engineering Seismology & Earthquake Engineering - Research Unit of Earthquake Planning & Protection Organization (ITSAK-EPPO)

 Democritus University of Thrace - Special Account for Research Funds (DUTh)

- Ovidius University of Constanta (OUC)
- Institute of Geology and Seismology (IGS)

Chapter	Chapter Title	Status
1	Background of the Document	Done
2	Types of Hazard on Buried Pipelines	Done
3	Performance of Pipelines in Past Earthquakes	Done
4	Empirical Fragility Curves for Pipeline Hazard Assessment	Done
5	Recommended Fragility Curves	Done
6	Implementation of Recommended Fragility Curve to Pilot Area	Ongoing

can.zulfikar@gmail.com