

Institute of Engineering Seismology & Earthquake Engineering (ITSAK) Scientist in charge: N. Theodulidis

Rapid Earthquake Damage Assessment Consortium" (REDACt)

WP3: (a) Seismic Source – (b) GMPEs Evaluations and Selection in REDAS [ITSAK]

Part of R&T team of ITSAK: Basil Margaris (Researcher A)

- Scope and goal of the Harmonization
- Seismic Sources (SHARE or others) & refinement
- GMPEs selection & testings (Greece-Turkey, Romania-Moldova)
- Some comments/results from PSHA in the Greek Eligible Area.
- 1. SEISMOGENIC SOURCES AND FAULTS IN THE ELIGIBLE AREA Area of interest 1. All available seismogenic sources, faults and GMPES presented per country. 2. Seismic sources & faults and GMPEs may differ from each other and probably NOT-Compatible in cross border areas. Avoiding deviated results, a harmonization of seismic sources & 3. faults parameters in the Black Sea area with emphasis in cross border areas is attempted. 75 abcd3 4. Harmonization of the GMPEs for selected ones of shallow and Seismotectonic map of the Eurointermediate-depth seismic events in ROM-MLD & TR-GR

Seismotectonic map of the Euro-Mediterranean area developed for the SHARE prj. (Delavaud et al. 2012; Woessner et al. 2015)

Harmonized seismic faults/sources for REDAS

(Papazachos 1990)

CROSS BORDER

(Papaioannou & Papazachos 2000)

(Vamvakaris etal, 2016)

Harmonized seismic faults/sources for REDAS

(Papazachos etal, 2001)

CROSS BORDER

(SHARE Project 2010)

EUROPEAN UNION

Calabrian Arc Hellenic Arc Cyprus Arc 40

Harmonized seismic faults/sources for REDAS

(SHARE Project 2013)

(SHARE Project 2013)

CROSS BORDER

EUROPEAN UNION

2. GMPEs selection & ranking Greece-Turkey;

(Modified from Theodoulidis 2022)

Selection of candidate GMPEs

- Selection of regional & worldwide GMPEs (see Douglas 201)
- Application of specific criteria (see Cotton et al. 2006)
- Review of the GMPEs applicability range of their dependent variables
- > Evaluation of the GMPEs using the criteria of Bommer et al. (2010)

Testing Using data

<u>Ranking of GMPEs based on Scherbaum et al. (2009; LLH)</u>, Mak etal. (2017; MLLH), Kale & Akkar(2013; EDR).

Proposition of logic tree

- Selection of the final GMPEs (Reckon on LLH, MLLH & EDR)
- Proposition of different sets of weights (if necessary)

Final Logic Tree of GMPEs

[Similar to SHARE 2013, strategy]

CROSS BORDER

COOPERATION

X

2. GMPEs selection & testings AT3.1 (Greece-Turkey)

No	Reference	Remarks								
1	Erdik et al. (1985)	excluded	CMDM	Magni	Dictorco	Intoncit	Sito	Stule of	Horizontal	Pogion
2	Theodoulidis & Papazachos(1992)	excluded	GIVIPIVI	Iviagiii	Distance	mensit	oloccificati	Style of	Compone	Region
3	Theodoulidis & Papazachos(1994)	excluded	-	tude	туре/	У	classificati	Faulting	Compone	
4	Theodoulidis et al. (1998)	excluded		type/	Range	measur	ontype		пстуре	
5	Gülkan and Kalkan (2002)	excluded		Range		es		NG 66		-
6	Skarlatoudis et al. (2003)	excluded	Akkar et al.	IVI _w /	R _{jb} , R _{hypo}	PGA,	V _{s30} based	NS, SS,	Geometric	Europe
7	Özbey et al. (2004)	excluded	(2014)	4.0-	or R _{epi} /1-	PGV, S _a		RS	Mean	and
8	Ulusay et al. (2004)	excluded		7.6	200 km	(T=0.02-				Middle-
9	Kalkan and Gülkan (2004)	excluded				4.0 s)				East
10	Beyer and Bommer (2006)	excluded	Chiou and	M _w /	R _{rup} , R _{jb} ,	PGA,	V _{S30} based	NS, SS,	Arithmetic	Global,
11	Güllü and Erçelebi (2007)	excluded	Youngs (2014)	3.5-	R _x / 0 –	PGV, S _a	(180 – 1500	RS	mean	California
12	Bindi et al. (2007)	excluded		8.5	300 km	(T=0.01-	m/s)			,
13	Akkar and Bommer (2007)	excluded		for SS		10.0 s)				Japan,
14	Danciu and Tselentis (2007)	excluded		M _w /						China,
15	Gullu et al. (2008)	excluded		3.5-						Italy,
16	Cabalar and Cevik (2009)	excluded		8.5						Turkey
17	Akyol and Karagöz (2009)	excluded		for NS						
18	Selcuk et al. (2010)	excluded		or RS						
19	Akkar and Bommer (2010)	excluded								
20	Ulutaş and Özer (2010)	excluded	Abrahamson et	M/	R., Ruter	PGA.	V _{cao} based	NS. SS.	Arithmetic	Global.
21	Akkar and Çağnan (2010)	excluded	al. (2014)	3.0-	R., R., / 0	PGV. S.	- 330	RS	mean	California
22	Çağnan et al. (2011)	excluded	(,	8.5	$-300 \mathrm{km}$	(T=0.01-			mean	
23	Yilmaz (2011)	excluded		0.0	000 1111	10.0 s)				, Janan
24	Kayabali and Beyaz (2011)	excluded				10.0 3)				China
25	Skarlatoudis et al. (2013)	For Hellenic subduction & 4.5≤M≤6.5 & Vs30 not available								Italy
26	Bindi et al. (2014)	Use of RESORCE database as in Akkar et al. (2014)								Turkev
27	Chiou and Youngs (2014)	ОК								Taiwan
28	Abrahamson et al. (2014)	ОК	Chousianitis et	м /	R /	PGA	NEHRD	Linknow	Geometric	Grooco
29	Akkar et al. (2014)	ОК		4 0-		PGV T	classificatio	n NS	Moon	Greece
30		Is based on the model of Akkar & Cagnan (2010) and site terms of	al. (2010)	4.0-	0.3-200	FGV, I _m		11, 1NJ,	Ivicali	
	Kale et al. (2015)	Sandikkaya et al. (2013))	Kotha atal	0.0 M /		DCA	$\Pi(B, C, D)$	33, 53		Europo
			(2020)	1VI _W /	n _{jb} / 1-	PGA,	V _{S30} Daseu	-	ROLDSU	end
31	Kotha et al. (2016a,b)	Is based on RESORCE data and improved in 2020	(2020)	3.0-	545 KIII	PGV, S_a	(90 - 3000)			dilu Maalitaan
32	Cagnan et al. (2017)	Presents only vertical component		7.4		(1=0.01-	m/s) or			Wealterr
33	Javan-Emrooz et al. (2018)	Presents only PGA, PGV, PGD and 2 site classes				8.0 S)	siope			anean
34		Use Mygdonian basin moderate to small magnitude data-Coefficients are	December 1		D /4	DCA	based		0.1050	-
	Ktenidou et al. (2018)	not reported	Boore et al.	IVI _w /	R _{jb} /1-	PGA,	v _{s30} based	UNKNOW	ROTD50	Greece
35	Chousianitis et al. 2018)	OK	(2021)	4.0-	300 km	PGV, S _a	(150 – 1200	n, NS,		
36	Kotha et al. (2020)	ОК		8.0		(「=0.01-	m/s)	SS, RS		
37	Boore et al. (2021)	ОК				10.0 s)				

2. GMPEs selection & racking AT3.1 (Greece-Turkey) Methods and Results

1. Normalized residuals method

Table 2.5: Ranking (combined) of selected GMPMs based on combined PGA and PGV

i coluuu

Ranking	GMPM	MeanNorm Res(PGA-PGV)	std dev (PGA-PGV)	Z(PGA-PGV)
1	Boore et al. (2021) w bias	0.134	0.861	0.273
2	Chiou and Youngs (2014)	-0.230	1.082	0.313
3	Chousianitis et al. (2018)	-0.286	0.861	0.424
4	Akkar et al. (2014)	-0.369	0.887	0.483
5	Boore et al. (2021) w/o bias	-0.562	0.932	0.630
6	Kotha et al. (2020)	-0.407	0.749	0.658
7	Abrahamson et al. (2014)	-0.720	0.951	0.769

2. Log-Likelihood method

Table 2.8: Ranking of selected GMPMs based on combined LLH for PGA and PGV

Ranking	GMPM	LLH
1	Chousianitis et al. (2018)	0.160
2	Boore et al. (2021) w/obias	0.910
3	Boore et al. (2021) w bias	0.930
4	Chiou and Youngs (2014)	0.932
5	Kotha et al. (2020)	0.971
6	Akkar et al. (2014)	1.035
7	Abrahamson et al. (2014)	1.167

Weighting Factor :

A / A	GMPM	w _l - LLH	w _l - residuals	Final w _i
1	Boore et al. (2021) w bias	0 160	0 281	0 346
2	Chiou and Youngs (2014)	0.160	0.270	0.337
3	Boore et al. (2021) w/o bias	0.162	0.241	0.317
4	Chousianitis et al. (2018)	0.272	0.121	-

Evaluation of GMPEs in Regional and Global Scale (Sotiriadis & Margaris, SDEE, 2022)

Table 1: Selected regional and global GMPEs for evaluation of their predictive performance

*NS: Normal-slip, SS: strike-slip, RS: reverse-slip or thrust

GMPE	Magnitude	Distance type/	Intensity	Site classification	Style of Faulting	Horizontal	Region
	type/Range	Range	measures	type		Component type	
Danciu and Tselentis	M _w / 4.5-6.9	R _{epi} /	PGA, PGV, S _a	NEHRP classification	NS,	Arithmetic mean	Greece
(2007) (DaTs07)		0.3-136 km	(0.1-4s)	(B, C, D)	SS, RS		
Bindi et al. (2014)	M _w / 4.0-7.6	R_{jb} or $R_{hypo}/1-300$	PGA, PGV, S _a	Eurocode 8	Unknown, NS, SS,	Geometric Mean	Europe and
(Bindi14)		km	(T=0.02-3.0 s)	classification (A - D)	RS		Middle-East
				and V _{S30} based			
Akkar et al. (2014)	M _w / 4.0-7.6	R _{jb} , R _{hypo} or R _{epi} /1-	PGA, PGV, S _a	V _{s30} based	NS, SS, RS	Geometric Mean	Europe and
(Akkar14)		200 km	(T=0.02-4.0 s)				Middle-East
Boore et al. (2014)	M _w / 3.0-8.5	R _{jb} /1-400 km	PGA, PGV, S _a	V_{s30} based (150 –	Unknown, NS, SS,	RotD50	Global, California,
(Bssa14)			(T=0.01-10.0 s)	1500 m/s)	RS		Japan, China, Italy,
Chieve and Maximum)/ beend (190		DetDC0	Turkey, Taiwan
(2014)	$W_w/3.5-8.5$ for SS	R_{rup} , R_{jb} / 0 – 300	PGA, PGV, S_a	V_{S30} based (180 –	NS, SS, KS	ROLDSU	Global, California,
(2014)	IVI _w / 3.3-8.5 IUI INS	кш	(1=0.01-10.03)	1500 m/s)			Japan, China, Italy,
(CT14)	ULKS						тигкеу
Abrahamson et al.	M _w / 3.0-8.5	R_{rup} , R_{ib} , R_x , $R_{v0}/0$	PGA, PGV, S _a	V _{s30} based	NS, SS, RS	RotD50	Global, California,
(2014)		– 300 km	(T=0.01-10.0 s)				Japan, China, Italy,
(ASK14)							Turkey, Taiwan
Campbell &	M _w / 3.3-8.5	R _{rup} /	PGA, PGV, Sa	V _{s30} -based	NS, SS, RS	RotD50	Global
Bozorgnia (2014)		0-300 km	(0.01-10s)				
(CB14)							
Derras et al. (2014)	M _w / 3.6-7.6	R _{jb} /0-550 km	PGA, PGV, Sa	V _{S30} -based	NS, SS, RS	Arithmetic mean	Europe and
(Derras14)			(0.01-4s)				Middle-East
Cauzzi et al. (2015)	M _w / 4.5-7.9	R _{rup} /	S _D (0-10s), PS _A (0-	Eurocode 8 ground	Unknown, NS, SS,	Geometric Mean	Global
(Cauzzi15)		0-150 km	10s), PGA, PGV	type-based or V _{S30} -	RS		
				based			
Kotha at al. (2020:	M /2074	D /1 E4E km		V based (00 2000		PotDE0	Europa and
xotna et al. (2020;	IVI _w / 3.0-7.4	к _{jb} / 1-545 кш	(T=0.01.8.0c)	v_{S30} based (90 – 3000	-	RULDOU	Europe and Meditorranoan
(Kot20)			(1-0.01-0.03)	mysy or slope based			wediterraneall
Boore et al. (2021)	M / 4 0-8 0	B. /1-300 km	PGA PGV S	V based (150 -	Linknown NS SS	RotD50	Greece
(Bea21)	W _W / 4.0-0.0	Njb/ 1-300 KIII	(T=0.01-10.0 s)	1200 m/s	RS	Notboo	Greece
			(. 5.01 10.03)	2200 11, 5,			

Evaluation of GMPEs in Regional and Global Scale

(Sotiriadis & Margaris, SDEE, 2022)

Methodology

- 1. Log-Likelihood method (LLH; Scherbaum etal., 2004, 2009)
- 2. Euclidean distance based ranking (EDR; Kale & Akkar, 2013)
- 3. Multivariate LLH (M-LLH; Mak etal., 2017)

Ranking	GMPE	EDR	LLH	MLLH	Total	Weight
		UNW	UNW	UNW	UNW	
1	Bea21	11	11	11	33	0.38
2	Kot20	10	10	10	30	0.34
3	CY14	7	9	9	25	0.29

Evaluation of GMPEs in Regional and Global Scale

(Sotiriadis & Margaris, SDEE, 2022)

LLH with respect to period of vibration for every GMPE considered. Period value equal to - 1 corresponds to PGV.

EDR with respect to period of vibration for every GMPE considered. Period value equal to - 1 corresponds to PGV.

CROSS BORDER COOPERATION MLLH with respect to period of vibration for every GMPE considered. Period value equal to \Box 1 corresponds to PGV.

CROSS BORDER

Comparative PSHA (Greece-Turkey)

Application for PSHA in East Macedonia and Thrace Region: KEDIAK Project

Sotiriadis D., B. Margaris N. Klimis, & I. Dokas (2023). Seismic Hazard in Greece : A Comparative study for the region of East Macedonia and Thrace, **Journal of Geohazards** (Under Publication).

CROSS BORDER

Comparative PSHA(Greece-Turkey)

Application for PSHA in East Macedonia and Thrace Region : KEDIAK Project

Sotiriadis D., B. Margaris N. Klimis, & I. Dokas (2023). Seismic Hazard in Greece : A Comparative study for the region of East Macedonia and Thrace, **Journal of Geohazards** (Under Publication).

Seismic Source Models

- 1. Seismic Faults -PZ01 (Papazachos etal. 2001) and Background Seismic Sources ESHM13 [SHARE-B].
- 2. Seismic Faults and Background Seismic Sources ESHM13 [SHARE_F_B ~ TAB_21].
- 3. Area seismic zones ESHM20 [SHARE-Areal].

Project funded by EUROPEAN UNION **Comparative PSHA**(Greece-Turkey) Application for PSHA in East Macedonia and Thrace Region: KEDIAK Project

Sotiriadis D., B. Margaris N. Klimis, & I. Dokas (2023). Seismic Hazard in Greece : A Comparative study for the region of East Macedonia and Thrace, **Journal of Geohazards** (Under Publication).

CROSS BORDER

Discussions - Conclusions

- The variability of the seismic source models have been examined within the framework of the present project. For most of the sites considered the variability of the results due to the source model selection is significant, in terms of Probabilistic Seismic Hazard Assessment (PSHA).
- Within the framework of REDACt project, particular attention is devoted in the selection of GMPEs. In the work presented herein, the reliability of the prediction accuracy of a pre-selected suite of GMPEs, against observed strong motion data of shallow Greek earthquakes, is evaluated. The goal of this work is to facilitate GMPE selection for PSHA in Greece, using a data-driven rationale, rather than conducted Strong Motion Calculations.
- The present study's results are compared against the results of the recent ESHM13 and ESHM20 seismic hazard models. As a general comment, one could argue that the PSHA maps proposed herein, having the significant advantage of local verification of the PHSA components, stand between the ones proposed by ESHM13 and ESHM20. Moreover, significant differences are observed between the ESHM13 and ESHM20 maps.

A Black Sea Basin Joint Operational Programme 2014-20 project

https://www.redact-project.eu

Thank You - Ευχαριστώ

Common borders. Common solutions.

X